Abstract

The time-resolved photodissociation dynamics of CH(3)I in the A-band has been studied theoretically using a wave packet model including four degrees of freedom, namely the C-I dissociation coordinate, the I-CH(3) bending mode, the CH(3) umbrella mode, and the C-H symmetric stretch mode. Clocking times and final product state distributions of the different dissociation (nonadiabatic) channels yielding spin-orbit ground and excited states of the I fragment and vibrationless and vibrationally excited (symmetric stretch ν(1) and umbrella ν(2) modes) CH(3) fragments have been obtained and compared with the results of femtosecond velocity map imaging experiments. The wave packet calculations are able to reproduce with very good agreement the experimental reaction times for the CH(3)(ν(1), ν(2))+I*((2)P(1/2)) dissociation channels with ν(1) = 0 and ν(2) = 0,1,2, and also for the channel CH(3)(ν(1) = 0, ν(2) = 0)+I((2)P(3/2)). However, the model fails to predict the experimental clocking times for the CH(3)(ν(1), ν(2))+I((2)P(3/2)) channels with (ν(1), ν(2)) = (0, 1), (0, 2), and (1, 0), that is, when the CH(3) fragment produced along with spin-orbit ground state I atoms is vibrationally excited. These results are similar to those previously obtained with a three-dimensional wave packet model, whose validity is discussed in the light of the results of the four-dimensional treatment. Possible explanations for the disagreements found between theory and experiment are also discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.