Abstract

Recent advances in micro-electronics technology to build small radio-enabled implantable and wearable medical sensors have sparked considerable interest in body area networks. Understanding the characteristics of radio frequency propagation inside and around the human body requires obtaining sufficient amount of data for different scenarios via physical experiment with human subjects. This is either difficult or in the case of implants, nearly impossible. In addition, the body motion could significantly impact the quality of wireless communication links (i.e. the propagation channel) among implants or wearable medical sensors. To address these issues, we have developed an immersive platform capable of emulating physical experiments. The platform includes a dynamic (i.e. 4D) human body model that can emulate various human motion e.g. walking. This 4D immersive platform can be used as a scientific instrument to study various Radio Frequency communication channels inside or on the surface of a human body. It can also be used to identify the best scenarios for limited physical experimentation and measurements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call