Abstract

The mnemonic descent method (MDM) algorithm is the first end-to-end recurrent convolutional system for high-accuracy face alignment. However, the heavy computational complexity and high memory access demands make it difficult to satisfy the requirements of real-time applications. To address this problem, an improved MDM (I-MDM) algorithm is proposed for efficient hardware implementation based on several hardware-oriented optimizations. First, a patch merging mechanism is introduced to dynamically cluster and eliminate redundant landmarks, which significantly reduces computational complexity with minimal accuracy loss. Second, a dedicated convolutional layer is inserted to halve the number of computations and memory access of the subsequent fully connected layer, yielding a 4.42% decrease in the failure rate. Third, a lightweight preprocessing method named dual regressors is proposed to reinitialize face images, which can greatly improve the overall accuracy. Moreover, compared with a similar method, the DR method can reduce computations and memory storage by nearly 99.9%. Overall and compared with the MDM algorithm, I-MDM not only reduces the number of computations by 23.5% but also decreases the failure rate by 17.9% on the 300 W test set. Based on the proposed I-MDM algorithm, an I-MDM-based hardwired accelerator is presented using the TSMC 65 nm CMOS process. First, compared with similar solutions, the gradient calculation operation is rearranged and loaded pixels are reused in the HoG feature extraction to eliminate all division operations and 25% off-chip memory access. Second, patch-independent central activations are used to enable patch-level pipelined operations, yielding a 2× acceleration in the overall process. This accelerator achieves 460 GOPS/W energy efficiency at 330 MHz, which is 38× higher than the most recent face alignment accelerator with the same process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.