Abstract

In this paper, a high gain amplifier with phase compensation loop is presented. A structure of parallel gate cross-coupled transistors to both ends of differential pair drain and source is designed to improves the load impedance, which obtains sufficient gain and further reduces power consumption. A novel capacitor bootstrap load circuit is proposed. The capacitor bootstrap topology is constructed by the drain source resistance of the transistor working in the cut-off region, where the gate source parasitic capacitor of the transistor is in parallel with the bootstrap capacitor rather than the existing series structure, thereby only a small bootstrap capacitor is required. By avoiding the use of large capacitors, chip area can be effectively reduced without compromising performance such as gain and bandwidth. The amplifier is fabricated using 10-μm n-type a-IGZO TFT technology. Measurement results show that the proposed amplifier achieves a voltage gain of 43.5dB and a common mode rejection ratio of 61.2dB while maintaining low power consumption. The amplifier also exhibits a -3dB bandwidth covering 0.4~2.1KHz, encompassing major bioelectric frequency bands. A real-time ECG signal was successfully captured using the fabricated TFT amplifier and gel electrodes. It has great potential in flexible sensing and acquisition applications such as electro cardiogram (ECG), electro encephalogram (EEG), pulse detection, and other wearable applications.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call