Abstract

The design and experimental results of a 40-stage distributed energy store (DES) plasma arc railgun are presented. The railgun drives a free running hypervelocity plasma arc, one that is not pushing a payload, to velocities in excess of 10 km/s. These high velocities are of interest as they are required to successfully launch payloads into low earth orbit (LEO). The ability to launch payloads into LEO using a hypervelocity electromagnetic launcher has many financial benefits over the more conventional chemical combustion launchers. In collaboration on an Air Force Office of Scientific Research (AFOSR) funded Multidisciplinary University Research Initiative (MURI) project, the Center for Pulsed Power and Power Electronics (P3E) at Texas Tech University in Lubbock. Texas has been responsible for developing and investigating a functional scale model of a multi-stage DES railgun to determine its effectiveness to suppress restrike phenomenon and increase plasma armature railgun performance. The distributed energy scheme is theorized to suppress restrike arc formation because the back emf voltage is localized to active stage regions. B-dot sensors positioned along the length of the launcher provide data to measure the plasma arc velocity and detect restrike, arc splitting, or additional secondary arc formation phenomena.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.