Abstract

An embedded phase change memory technology in 40nm low-power logic platform is demonstrated with minimal added process complexity - two non-critical additional masks over standard logic. Specially designed hard mask and etching process was used to achieve 50% shrinkage of the memory cell bottom electrode dimension with same lithography tooling as the 40nm logic platform. Bottom electrode CD shrinkage along with optimization of the electrode materials in terms of electrical and thermal conductivity enabled significant (∼4x) write current reduction attaining competitive levels of $\sim 300 \mu\mathrm{A}$ at 40nm BE CD. Embedded PCM cells reported in this work demonstrated over 100x memory window - (RESET/SET resistance switching ratio), over 200k cycling endurance with extrapolated 10 year retention at 120 °C. In this work not only large switching resistance ratios but also highly-controllable resistance values that are almost independent of the PCM starting resistance state are presented along with the corresponding programing pulse requirements. The switching resistance ratio and resistance value controllability are key features for neural network and compute-in-memory applications. In this work, their benefits on design margins for energy efficient high-density binary neural network for inference applications aiming accuracy levels of well over 90% is asserted over an MNIST dataset.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.