Abstract

A near-field wireless power transfer (WPT) system for implantable medical devices, such as pacemakers, is proposed. Operating at 403 MHz within the medical implants communication service (MICS) band, the WPT link constitutes a primary loop to be based outside the body as a transmitter and an implantable loop with a single-turn as a receiver. Simulation and experimental results show that the proposed link offers good power transfer efficiency (PTE) performance. The maximum measured PTE of the proposed link is 57.9&#x0025; at a transfer distance of 6 mm through 1 mm of air and 5 mm of body tissue. The maximum input power that can be supplied to stay within specific absorption rate safety guidelines is 159 mW. A rectifying circuit is designed to convert 403 MHz RF signals to dc for a 1.5 <inline-formula> <tex-math notation="LaTeX">$\text{k}\Omega $ </tex-math></inline-formula> load with a measured conversion efficiency of 73.2&#x0025;. The measured end-to-end PTE of the proposed WPT system is 42.4&#x0025;.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.