Abstract

This letter presents a graphene field effect transistor (GFET) detector at 400 GHz, with a maximum measured optical responsivity of 74 V/W, and a minimum noise-equivalent power of 130 pW/Hz1/2. This letter shows how the detector performance degrades as a function of the residual carrier concentration in the graphene channel, which is an important material parameter that depends on the quality of the graphene sheet and contaminants introduced during the fabrication process. In this work, the exposure of the graphene channel to liquid processes is minimized resulting in a low residual carrier concentration. This is in part, an important contributing factor to achieve the record high GFET detector performance. Thus, our results show the importance to use graphene with high quality and the importance to minimize contamination during the fabrication process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.