Abstract

This work aims at presenting a novel four-node quadrilateral element, which is enhanced by integrating with discrete shear gap (DSG), for analysis of Reissner-Mindlin plates. In contrast to previous studies that are mainly based on three-node triangular elements, here we, for the first time, extend the DSG to four-node quadrilateral elements. We further integrate the fictitious point located at the center of element into the present formulation to eliminate the so-called anisotropy, leading to a simplified and efficient calculation of DSG, and that enhancement results in a novel approach named as "four-node quadrilateral element with center-point based discrete shear gap - CP-DSG4". The accuracy and efficiency of the CP-DSG4 are demonstrated through our numerical experiment, and its computed results are validated against those derived from the three-node triangular element using DSG, and other existing reference solutions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call