Abstract

Chaotic oscillators have a wide range of possible applications including random number generation (RNG), a stimulation source for characterization of MEMS devices, spread spectrum communications, and audio range and RF noise sources. Some distinct characteristics of chaotic systems include topological mixing, determinism, long-term aperiodic behavior, sensitivity to initial conditions, as well as a spread spectrum response. In particular, the aperiodic behavior and sensitivity to initial conditions make chaotic oscillators an ideal candidate for RNG. In practice, one of the more important aspects of a RNG is the speed at which data/bits can be generated. In electronics, as the frequency of operation increases, so do the design restrictions and challenges. In addition, many of these chaotic systems are based on nonlinearities or complex math functions that are difficult to implement in electronic circuitry. Through careful selection of the system’s structure, complex behavior can be achieved in electronic circuitry with minimized component count, footprint and power consumption. Additionally, this concept reduces the design complexity compared to traditional techniques, and the jerk chaos architecture can aid in increasing the fundamental frequency by minimizing feedback paths in the chaotic oscillator. Presented in this work is a printed circuit board electronic implementation of a 4 MHz chaotic jerk system that exhibits complex, rich dynamics using very simple electronic circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.