Abstract

This article introduces a 4 kV&#x002F;120 A solid-state dc circuit breaker (DCCB) based on discrete SiC <small>mosfet</small>s. The DCCB is designed in a five-layer tower structure. Each layer consists of a circular main conduction branch and an attached gate driver. There are two primary benefits of the proposed DCCB. First, it reduces conduction loss with multiple devices in parallel. Second, it achieves an ultrafast response speed with SiC <small>mosfet</small>s. Moreover, the gate drivers of the DCCB are powered by a domino inductive power transfer (IPT) system. It achieves the load-independent constant-voltage output characteristics, which means the outputs are immune to load variations. An IPT system prototype is implemented to test the power transfer performance. At 500-kHz frequency, the total output power reaches 15.73 W, which is sufficient to power on five gate drivers, with a peak transfer efficiency of 75.4&#x0025;. The IPT system is tested to power a 4 kV&#x002F;120 A DCCB prototype. It validates that the DCCB is effective to turn off 120 A current within 3.5 <i>&#x03BC;</i>s.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.