Abstract

A new numerical scheme of 3rd order Weighted Essentially Non-Oscillatory (WENO) type for 2.5D mixed GLM-MHD in Cartesian coordinates is proposed. The MHD equations are modified by combining the arguments as by Dellar and Dedner et alto couple the divergence constraint with the evolution equations using a Generalized Lagrange Multiplier (GLM). Moreover, the magnetohydrodynamic part of the GLM-MHD system is still in conservation form. Meanwhile, this method is very easy to add to an existing code since the underlying MHD solver does not have to be modified. To show the validation and capacity of its application to MHD problem modelling, interaction between a magnetosonic shock and a denser cloud and magnetic reconnection problems are used to verify this new MHD code. The numerical tests for 2D Orszag and Tang's MHD vortex, interaction between a magnetosonic shock and a denser cloud and magnetic reconnection problems show that the third order WENO MHD solvers are robust and yield reliable results by the new mixed GLM or the mixed EGLM correction here even if it can not be shown that how the divergence errors are transported as well as damped as done for one dimensional ideal MHD by Dedner et al.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.