Abstract

This paper presents a novel class of 3-DOF translational compliant parallel manipulators (CPMs) based on flexure motion. The analytic mathematic modeling of CPMs is first developed. The analysis of CPMs is then implemented. It is shown that the proposed CPMs have many characteristics such as large range of motion, negligible cross-axis coupling, actuator complete isolation, and no loss motion and no rotational yaw. The inverse relationships of force-displacement of the 3-DOF CPM are further derived to calculate the input forces required for generating a specified path. In addition, the 3-DOF CPM can also be turned into a 2-DOF CPM. This work lays the foundation for the development of new spatial CPMs based on flexure motions for applications such as ultra precision manipulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call