Abstract

Accurate predictions of earth’s interior thermal conductivity are essential for interpreting the mechanisms involved in geothermal systems and delineating geothermal resource targets. Existing thermal conductivity prediction methods, which typically involve measurements of rock samples and predictions based on geophysical well logging, cannot accurately predict regional thermal conductivity distributions. We develop a 3D thermal conductivity prediction based on temperature field estimation. First, the finite-element method is used for temperature forward modeling. Subsequently, the inexact Gauss-Newton method is implemented in the prediction algorithm. Synthetic studies indicate that the method can recover the true model well. The subsurface temperature distribution of the Xiong’an New Area is predicted using the coefficient correction method of the optimal temperature. Next, we obtain the 3D distribution of thermal conductivity of deep formation in the Xiong’an New Area with the predicted temperature field. The distribution of terrestrial heat flow also is estimated. In addition, the law of thermal accumulation of strata at different depths is analyzed, and the internal relation among resistivity, temperature, and thermal conductivity is studied. Thus, the 3D thermal conductivity prediction method provides the theoretical basis for interpreting mechanisms for the origin of geothermal systems and heat accumulation patterns. It could have significant utility for the analysis of geothermal fields and the sustainable development and use of geothermal resources.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call