Abstract

A simple paper-based microfluidic device was fabricated to simultaneously detect multiple targets. Microfluidic paper-based analytical devices (μPAD) comprise a single-layer moving sliding PAD (SPAD) to control the flow channel switch together with a folding origami PAD (OPAD) to test the target analytes. The facile assembly without any splicing materials avoids cross-contamination and non-specific adsorption of joining materials that may be caused by multi-target detection. The concentration of Fe(III), Ni(II), Cr(VI), and nitrite in standard solutions and actual aqueous solutions was successfully determined using the designed μPAD. The μPAD was able to achieve LOD of 3.3 mg/L, 1.3 mg/L, 0.35 mg/L, 0.28 mg/L for Fe (III), Ni (II), Cr (VI), and nitrite, respectively. The designed SOPAD exhibits improved stability, with a deviation of less than 7% compared to conventional analytical methods (ICP-OES and UV). Our work demonstrates that this 3D PAD holds great promise and a wide scope in environmental monitoring, biochemical analysis, food testing and other testing industries.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call