Abstract
We define a Schrödinger operator on the half-space with a discontinuous magnetic field having a piecewise-constant strength and a uniform direction. Motivated by applications in the theory of superconductivity, we study the infimum of the spectrum of the operator. We give sufficient conditions on the strength and the direction of the magnetic field such that the aforementioned infimum is an eigenvalue of a reduced model operator on the half-plane. We use the Schrödinger operator on the half-space to study a new semiclassical problem in bounded domains of the space, considering a magnetic Neumann Laplacian with a piecewise-constant magnetic field. We then make precise the localization of the semiclassical ground state near specific points at the discontinuity jump of the magnetic field.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.