Abstract

Abstract We present a 3D regional crustal model for the North Atlantic, which is based on the integration of seismic constraints and gravity data. The model addresses the crustal thickness geometry, and includes information on sedimentary thickness, the presence of high-velocity zones in the lower crust, and information on the crustal density distribution in the continental and oceanic domains. Using an iterative forward- and inverse-modelling approach, we adhere to the seismic constraints within their uncertainty, but manage to enhance the crustal geometry in areas where seismic data are sparse or absent. A number of basins are resolved with more detail. Recently released seismic reflection data beneath the NE Greenland Shelf allowed for a major improvement of the crustal thickness estimates. Estimated Moho depths beneath the basins there vary between 15 and 25 km, which is compatible with the conjugate Norwegian margin. A major lower-crustal seismic velocity anomaly in the vicinity of the Greenland–Iceland–Faroe Ridge complex is supported by density modelling. We discuss the validity and uncertainties of our model assumptions and discuss the correlation with the main structural elements of the North Atlantic.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.