Abstract
This paper presents a three-dimensional Progressive Failure Model based on the chain of bundles able to represent the stiffness loss in unidirectional composite materials loaded in the fibre direction. A representative volume element with a random distribution of fibres with their own radius is considered. Complete stress distributions around fibre breaks are obtained by associating a damage variable to the loss of stress transfer capability along the ineffective length and applying local stress concentrations. The model has been validated by comparing it against the literature results and exhibits good agreement with hybrids and non-hybrid composites. The aim of this model is to simulate the tensile response of unidirectional composite systems dominated by fibre fragmentation mechanisms using a very reduced computational effort, even for larger representative volume elements, compared to micro-mechanical finite element models.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Composites Part A: Applied Science and Manufacturing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.