Abstract

Polymer-based piezoelectric motors have excellent properties, such as lightweight and corrosion resistance. In addition, 3D printing and customized additive manufacturing of polymers provide new opportunities for the development of piezoelectric motors with complex or special structures. In this paper, a 3D printed polymer-based sandwich-type piezoelectric motor operating in a single longitudinal mode is developed. A vibration decomposition model of the motor and an analytical model considering polymer viscoelasticity are established to analyze the dynamic characteristics and to determine the geometric structure of the motor. To increase the coefficient of friction, a polymer surface texture is utilized on the contacts. The experimental results show that the friction coefficient of the contact tip with surface texture is about 0.16, which increased by 45.5% compared to a smooth surface. The resonance frequency is 28.648kHz, and the maximum no-load speed under 300Vp-p is 54 r/min. Our study shows the promise of polymer-based materials in the development of the piezoelectric motor.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.