Abstract
Developing a self-expanding hemostatic sponge with high blood absorption and rapid shape recovery for noncompressible hemorrhage remains a challenge. In this study, a 3D-printed cuttlefish bone elastomeric sponge (CBES) is fabricated, which combined ordered channels and porous structures, presented tunable mechanical strength, and shape memory potentials. The incorporation of cuttlefish bone powder (CBp) plays key roles in concentrating blood components, promoting aggregation of red blood cells and platelets, and activating platelets, which makes CBES show enhanced hemostatic performance compared with commercial gelatin sponges in vivo. Moreover, CBES promotes more histiocytic infiltration and neovascularization in the early stage of degradation than gelatin sponges, which is conducive to the regeneration and repair of injured tissue. To conclude, CBp loaded 3D-printed elastomeric sponges can promote coagulation, present the potential to guide tissue healing, and broaden the hemostatic application of traditional Chinese medicine.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.