Abstract

Developing a self-expanding hemostatic sponge with high blood absorption and rapid shape recovery for noncompressible hemorrhage remains a challenge. In this study, a 3D-printed cuttlefish bone elastomeric sponge (CBES) is fabricated, which combined ordered channels and porous structures, presented tunable mechanical strength, and shape memory potentials. The incorporation of cuttlefish bone powder (CBp) plays key roles in concentrating blood components, promoting aggregation of red blood cells and platelets, and activating platelets, which makes CBES show enhanced hemostatic performance compared with commercial gelatin sponges in vivo. Moreover, CBES promotes more histiocytic infiltration and neovascularization in the early stage of degradation than gelatin sponges, which is conducive to the regeneration and repair of injured tissue. To conclude, CBp loaded 3D-printed elastomeric sponges can promote coagulation, present the potential to guide tissue healing, and broaden the hemostatic application of traditional Chinese medicine.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call