Abstract

To effectively detect and remove environmentally hazardous Cr(VI), a novel 3D porous fluorescent hydrogel was synthesised using amino-modified carbon dots and cellulose nanofibers. The synthesised fluorescent hydrogel was characterized to determine its morphology, crystalline structure, chemical composition and optical property using scanning electron microscopy, X-ray diffraction, Fourier transform infrared spectroscopy, UV–vis absorption spectroscopy and photoluminescence spectroscopy. The sorption properties of the synthesised fluorescent hydrogel were further analyzed. The maximum sorption capacity for Cr(VI) reached 534.4 mg/g, the adsorption isotherm was well fitted using Langmuir model, and the adsorption kinetics were well fitted using a pseudo-second-order model. The sensing ability of the synthesized hydrogel for Cr(VI) was also determined. Furthermore, the mechanism of Cr(VI) sorption and sensing was determined. Accordingly, this novel 3D porous fluorescent hydrogel was identified to be a promising sorbent with advantages of excellent sorption and sensing abilities for environmentally hazardous Cr(VI).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call