Abstract

Laser-induced incandescence (LII) has received increasing attention as a potentially powerful technique for in-situ measuring of the volume fraction and primary size of soot particles in combustion systems. In this study, a 3D Monte Carlo simulation combined with a Mie equation was developed to analyze the influence of spectral absorption and scattering on the measured LII flux emitted by soot particles. This paper represents a first attempt to analyze soot measurement using the LII technique in coal combustion products. The combustion products of gases (CO2, N2), soot, and fly-ash particles, present between the location of laser-excited soot and the LII flux receiver. The simulation results indicated that an almost Beer-Lambert exponential decrease in LII flux occurred with an increase in the volume fraction of soot particles, while a nearly linear decrease occurred with an increase in the volume fraction of fly-ash particles. The results also showed that scattering effects of both soot and fly-ash particles on the LII flux could be neglected. Compared with the absorption of gases, a decrease of 20% of LII flux was observed with soot particles, and a decrease of 10% with fly-ash particles.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call