Abstract

As one of the key technologies for the sixth generation (6G) mobile communications, intelligent reflecting surface (IRS) has the advantages of low power consumption, low cost, and simple design methods. But channel modeling is still an open issue in this field currently. In this paper, we propose a threedimensional (3D) geometry based stochastic model (GBSM) for a massive multiple-input multiple-output (ΜΙΜΟ) communication system employing IRS. The model supports the movements of the transmitter, the receiver, and clusters. The evolution of clusters on the linear array and planar array is also considered in the proposed model. In addition, the generation of reflecting coefficient is incorporated into the model and the path loss of the sub-channel assisted by IRS is also proposed. The steering vector is set up at the base station for the cooperation with IRS. Through studying statistical properties such as the temporal autocorrelation function and space correlation function, the nonstationary properties are verified. The good agreement between the simulation results and the analytical results illustrates the correctness of the proposed channel model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.