Abstract

Assessment and validation of the Electrical Impedance Tomography (EIT) system performance and calibration of systematic errors in the electrical field generated inside of the interrogated volume is an important requirement. System instabilities can be caused by the EIT design and must be characterized before and during the clinical trials. Evaluation of the Sussex EIT system used in the clinical study can be based on a realistic electronic phantom. We designed a mesh phantom based on the electrode configuration and mesh structures of the image reconstruction. The phantom has the capability of modelling the cellular electrical properties that are operative within a circular homogeneous medium. The design is optimized to assess the planar topology of the internal impedance distribution. The system employs the information from the electrical properties of biological tissues to evaluate the Cole-Cole dispersion data. This mesh phantom is capable of producing localized conductivity perturbations between each arbitrary channel in the electrode placement planar phantom topology by measuring all 1416 combinations that are to be used in the image reconstruction. The phantom is especially designed for the Sussex EIT system to validate system performance of measurements consisting of SNR, and modelling system accuracy.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.