Abstract

The microscale simulation of ultrafine particle transport and deposition in fibrous filtration media was achieved with a novel particle tracking model using a 3D Monte Carlo model. The particle deposition process is governed by the convection–diffusion field. Simulations were performed by considering the fibrous filtration media as an array of identical parallel fibers, in which the flow field was accurately described by an analytical solution. The model of particle movement was described by the random probability distribution characterized by a dimensionless factor, the Peclet number (Pe), based on a convection–diffusive equation of particle transport in fluid. The influence of the particle Peclet number (Pe) on the particle deposition process and the resulting deposition morphology was investigated. The results were analyzed in terms of dust layer growth, particles’ trajectories and dust layer porosity for a vast range of Peclet numbers. The development of distinct deposition morphologies was found by varying the Peclet number (Pe). With a small Peclet number, diffusion dominated deposition and led to the formation of a more open and looser dust layer structure, while with larger Peclet numbers, convection dominated deposition and was found to form compact deposits. According to the change in the location of the packing densities along the dust layer height direction, the dust layer structure could be divided into three typical parts: the substructure, main profile and surface layer. In addition, the deposit morphologies observed for a high Pe were in good agreement with the experimental results found in the literature.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call