Abstract

Human visual attention system tends to be attracted to perceptual feature points on 3D model surfaces. However, purely geometric-based feature metrics may be insufficient to extract perceptual features, because they tend to detect local structure details. Intuitively, the perceptual importance degree of vertex is associated with the height of its geometry position between original model and a datum plane. So, we propose a novel and straightforward method to extract perceptually important points based on global height field. Firstly, we construct spectral domain using Laplace---Beltrami operator, and we perform spectral synthesis to reconstruct a rough approximation of the original model by adopting low-frequency coefficients, and make it as the 3D datum plane. Then, to build global height field, we calculate the Euclidean distance between vertex geometry position on original surface and the one on 3D datum plane. Finally, we set a threshold to extract perceptual feature vertices. We implement our technique on several 3D mesh models and compare our algorithm to six state-of-the-art interest points detection approaches. Experimental results demonstrate that our algorithm can accurately capture perceptually important points on arbitrary topology 3D model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.