Abstract

Differential shrinkage between repair material and concrete substrate is considered to be the main cause of premature failure of repair systems. The magnitude of induced stresses depends on many factors, for example the degree of restraint, moisture gradients caused by curing and drying conditions, type of repair material, etc. Numerical simulations combined with experimental observations can be of great use when determining the influence of these parameters on the performance of repair systems. In this work, a lattice type model was used to simulate first the moisture transport inside a repair system and then the resulting damage as a function of time. 3D simulations were performed, and damage patterns were qualitatively verified with experimental results and cracking tendencies in different brittle and ductile materials. The influence of substrate surface preparation, bond strength between the two materials, and thickness of the repair material were investigated. Benefits of using a specially tailored fibre reinforced material, namely strain hardening cementitious composite (SHCC), for controlling the damage development due to drying shrinkage in concrete repairs was also examined.

Highlights

  • Concrete repair implies integration of the new material with the old concrete substrate in order to form a composite system capable of enduring exposure to mechanical loads and varying environmental conditions. What makes this difficult is the mismatch in age, properties, and performance of the two materials, often leading to premature failure of the multi-layered system [1,2]

  • All parameters for moisture transport andconditions fracture properties wereintaken as given in directions

  • The model was compared to experimental drying shrinkage-induced cracking in the repair systems

Read more

Summary

Introduction

Concrete repair implies integration of the new (repair) material with the old concrete substrate in order to form a composite system capable of enduring exposure to mechanical loads and varying environmental conditions. What makes this difficult is the mismatch in age, properties, and performance of the two materials, often leading to premature failure of the multi-layered system [1,2]. The repair material is usually covered or coated in order to enable good curing and prevent plastic shrinkage cracking. Due to environmental drying, ongoing hydration, and moisture absorption by the concrete substrate, the repair material loses water and tends to shrink

Objectives
Methods
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.