Abstract

The present work deals with the validation of 3D finite element model for free-surface flows. The model uses the non-hydrostatic pressure and the eddy viscosities from the conventional linear turbulence model are modified to account for the secondary effects generated by strong channel curvature in the natural rivers with meandering open channels. The unsteady Reynolds-averaged Navier–Stokes equations are solved on the unstructured grid using the Raviart–Thomas finite element for the horizontal velocity components, and the common P 1 linear finite element in the vertical direction. To provide the accurate resolution at the bed and the free-surface, the governing equations are solved in the multi-layers system (the vertical plane of the domain is subdivided into fixed thickness layers). The up-to-date k– ε turbulence solver is implemented for computing eddy coefficients, the Eulerian–Lagrangian–Galerkin (ELG) temporal scheme is performed for enhancing numerical time integration to guarantee high degree of mass conservation while the CFL restriction is eliminated. The present paper reports on successful validation of the numerical model through available benchmark tests with increasing complexity, using the high quality and high spatial resolution three-dimensional data set collected from experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.