Abstract
To enhance the functional capability of MRI, this study aims to develop a novel MR elastography (MRE) sequence that achieves rapid acquisition without distortion artifacts. A displacement-encoded stimulated echo (DENSE) with multiphase acquisition scheme was used to capture wave images. A center-out golden-angle stack-of-stars sampling pattern was introduced for improved SNR and data incoherence. A combination of Hadamard encoding and interleaved multislab acquisition schemes was used to increase the acquisition efficiency of MRE data with multiple directions and phase offsets. A generalized parallel-imaging and compressed-sensing method was further applied to accelerate the acquisition process. The imaging results of the proposed sequence were compared with those from six gradient echo (GRE)/EPI/DENSE-based MRE sequences via phantom and brain acquisitions. The proposed sequence achieved a 6-fold acceleration compared with GRE MRE. With the application of a conventional parallel-imaging and compressed-sensing algorithm, the scanning speed was further accelerated by 8-fold, matching the speed of EPI-based MRE. Phantom tests revealed small variances in stiffness measurements across the seven sequences (< 9.23%). The proposed sequence exhibited a higher contrast-to-noise ratio (1.38) than the two EPI-based sequences (0.61/0.76) and similar to GRE-based sequences (1.34/1.22/1.58). Brain imaging validated the effectiveness of the proposed sequence in accurate stiffness estimation and distortion artifact avoidance. A rapid DENSE-based MRE sequence with interleaved multislab acquisition and Hadamard encoding was developed at a speed matching EPI-based sequences, without compromising SNR or introducing distortion artifacts.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.