Abstract
In this work we present a three-dimensional extension of pantographic structures and describe its properties after homogenization of the unit cell. Here we rely on a description involving only the first gradient of displacement, as the semi-auxetic property is effectively described by first-order stiffness terms. For a homogenization technique, discrete asymptotic expansion is used. The material shows two positive () and one negative Poisson’s ratios (). If, on the other hand, we assume inextensible Bernoulli beams and perfect pivots, we find a vanishing stiffness matrix, suggesting a purely higher gradient material.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.