Abstract

Continuum robotic arms are based on non-rigid components that result in a nearly infinite number of degrees of freedom (DOF). Due to this reason it can be very complex to establish mathematical models for continuum robotic arms. This paper presents a 3D dynamic model of an arm based on octopus anatomy that utilizes 4 longitudinal and 4 radial muscles. The arm is composed of a multi-segment structure having distributed stiffness and damping to represent the muscles. The simulations are applied to a multi-segment arm, and results mimic several typical octopus arm motions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call