Abstract
A 3D compressible flow model was presented in Part I of the paper to study the occurrence of weak rotating waves in vaneless diffusers of centrifugal compressors. In this paper, detailed results on the influences of flow and diffuser geometry parameters, including inlet Mach number, inlet distortion, wave number, diffuser outlet-to-inlet radius ratio, diffuser width to inlet radius ratio, and impeller backswept angle, on the rotating waves are presented. It was found that inlet spanwise distortion of radial velocity has little effects on diffuser stability, but rotating wave speed increases with the distortion. The speed also increases with inlet Mach number, so does diffuser instability. Impeller backswept improves diffuser stability and this effect increases with diffuser radius ratio. Multiple resonances were found when impeller backswept is coupled to inlet distortion of radial velocity. These resonances may have similar stabilities but with different wave speeds, suggesting that two rotating waves with different rotating speeds may occur at the same time. Diffuser width was found to have little effects on stability and on wave speed if the same maximum and same minimum values of inlet distortion of radial velocity are kept, but have some effects if the values are not kept. A comparison was also made between the present model predictions and results in open literatures, and good agreement with the experimental results than previous 2D models was achieved.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.