Abstract

A three-dimensional spectral method based on Chebyshev-Chebyshev-Fourier discretizations is presented in the framework of the low Mach number approximation of Navier-Stokes equations. The working fluid is assumed to be a perfect gas with constant thermodynamic properties. The generalized Stokes problem, which arises from the time discretization by a second-order semi-implicit scheme, is solved by a preconditioned iterative Uzawa algorithm. Several validation results are presented in the case of steady and unsteady flows. This model is also evaluated for natural convection flows with large density variations in the case of a tall differentially heated cavity of aspect ratio 8. It is found that on contrary to convection at small temperature differences (Boussinesq), the 2D unsteady solution at Ra = 3.4 x 105 is unstable to 3D perturbations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.