Abstract

Under-race lubrication applied to the inter-shaft bearing of aeroengine is characterized by spray oil collection and oil delivery to the bearing via flow-path structure. Droplet splashing induced by the collision between spray oil and the scoop as well as oil flowing characteristics in the flow-path influence bearing lubrication efficiency. In previous investigations, the spray oil collection and oil delivery analysis were separated, and the effect of droplet splashing on bearing lubrication efficiency was not considered. Moreover, time-varying characteristics of oil delivered to the bearing were not accounted for. This is caused by time variations of the circumferential position of rollers and under-race feed holes. To overcome these limitations, a numerical model which integrates the spray oil collection and oil delivery analysis is proposed in this paper. The model is embedded with the function of calculating the flow rate of splashing droplets and analyzing time-varying characteristics of the oil fed to the bearing. Furthermore, the numerical model is validated by experimental investigation. The proposed numerical model facilitates the accurate calculation of bearing lubrication efficiency as well as the design of an efficient lubrication structure.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.