Abstract

Worldwide, freshwater systems are subjected to increasing temperatures and nutrient changes. Under phosphorus and nitrogen enrichment consumer communities are often thought to shift towards fast-growing and P-rich taxa, supporting the well-known link between growth rate and body stoichiometry. While these traits are also favoured under warming, the temperature effect on stoichiometry is less clear. As recently shown, there is a general link between functional traits and body stoichiometry, which makes the integration of stoichiometric traits a promising tool to help understanding the mechanisms behind taxonomic and functional community responses to nutrient changes and/or warming. Yet, such approaches have been scarcely developed at community level and on a long-term perspective. In this study, we investigated long-term responses in stoichiometry and functional trait composition of macroinvertebrate communities to nutrient changes (decreasing water P; increasing water N:P) and warming over a 34-year period in the Middle Loire River (France), testing the potentially opposing responses to these drivers. Both drivers should cause shifts in species composition, which will alter the overall community stoichiometry and functional composition following assumptions from ecological stoichiometry theory. We found that the macroinvertebrate community shifted towards P-poor taxa, causing significant trends in overall community stoichiometry which indicates long-term changes in the nutrient pool provided by these consumers (i.e. decrease in %N and %P, increase in N:P). Further, while the former high-P conditions favoured traits associated to detritus feeding and fast development (i.e. small maximum body size, short life duration), recent conditions favoured predators and slow-developing taxa. These results suggest nutrients to be a more important driver than temperature over this period. By providing a pivotal link between environmental changes and functional trait composition of communities, approaches based on stoichiometric traits offer sound perspectives to investigate ecological relationships between multiple drivers operating at various scales and ecosystem functioning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call