Abstract

This paper presents a ring-type, digitally controlled oscillator (DCO)-based integer-N digital phase-locked loop (DPLL) that can achieve low jitter and low reference spur concurrently. In order to minimize the quantization error, while consuming a small amount of power, this work presents an optimal-threshold (OT) time-to-digital converter (TDC). The thresholds of the OT TDC and the phase-correction gain of the loop are corrected continuously in the background. The PLL was fabricated in a 65-nm CMOS process and its measured rms jitter integrated from 1 kHz to 100 MHz and the reference spur of a 2.4-GHz frequency were 320 fs and -75 dBc, respectively. Through measurement, they were verified to be maintained robustly over temperature and supply variations. The active area was 0.055 mm <sup xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">2</sup> , and the power consumption was 6.0 mW.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.