Abstract

To investigate the role of tissue oxygenation as one of the control factors regulating tissue respiration, 31P-nuclear magnetic resonance spectroscopy (31P-NMR) was used to estimate muscle metabolites in isolated working muscle during varied tissue oxygenation conditions. O2 delivery (muscle blood flow x arterial O2 content) was varied to isolated in situ working dog gastrocnemius (n = 6) by decreases in arterial PO2 (hypoxemia; H) and by decreases in muscle blood flow (ischemia; I). O2 uptake (VO2) was measured at rest and during work at two or three stimulation intensities (isometric twitch contractions at 3, 5, and occasionally 7 Hz) during three separate conditions: normal O2 delivery (C) and reduced O2 delivery during H and I, with blood flow controlled by pump perfusion. Biochemical metabolites were measured during the last 2 min of each 3-min work period by use of 31P-NMR, and arterial and venous blood samples were drawn and muscle blood flow measured during the last 30 s of each work period. Muscle [ATP] did not fall below resting values at any work intensity, even during O2-limited highly fatiguing work, and was never different among the three conditions. Muscle O2 delivery and VO2 were significantly less (P < 0.05) at the highest work intensities for both I and H than for C but were not different between H and I. As VO2 increased with stimulation intensity, a larger change in any of the proposed regulators of tissue respiration (ADP, P(i), ATP/ADP.P(i), and phosphocreatine) was required during H and I than during C to elicit a given VO2, but requirements were similar for H and I.(ABSTRACT TRUNCATED AT 250 WORDS)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call