Abstract

This paper presents an energy-efficient readout circuit for micro-machined resonant sensors. It operates by briefly exciting the sensor at a frequency close to its resonance frequency, after which resonance frequency and quality factor are determined from a single ring-down transient. The circuit employs an inverter-based trans-impedance amplifier to sense the ring-down current, with a programmable feedback network to enable the readout of different resonant sensors. An inverter-based comparator with dynamically-adjusted threshold levels tracks the ring-down envelope to measure quality factor, and detects zero crossings to measure resonance frequency. The excitation frequency is dynamically adjusted to accommodate large resonance frequency shifts. Experimental results obtained with a prototype fabricated in 0.35 µm standard CMOS technology and three different SiN resonators are in good agreement with conventional impedance analysis. The prototype achieves a frequency resolution better than 30 ppm while consuming less than 80 nJ/meas from a 1.8 V supply, which is 7.8x less than the state-of-the-art.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.