Abstract
A 30~60 GHz broadband down-conversion mixer driven by low local oscillator (LO) power is presented. The down-conversion mixer utilizes an input signal coupling technique based on the Marchand balun to achieve broadband operation and achieves low LO power drive and low DC power consumption through the use of a weak inversion bias with Gilbert switching devices. The broadband conversion of single-ended to differential signals is achieved using the Marchand balun with compensation lines, and an equivalent circuit analysis is performed. For the intermediate frequency (IF) output, a self-biased IF trans-impedance amplifier with current reusing and an active IF balun structure are used to achieve signal amplification and single-ended signal output. Test results show that the proposed mixer achieves a conversion gain of -1.2 to 6.4 dB in an IF output bandwidth of 0.1 to 5 GHz at radio frequency (RF) input frequencies of 30 to 60 GHz and LO driving power of -10 dBm. The DC power consumption of the core mixing unit of the proposed mixer is 4.8 mW, and the DC power consumption including the IF amplifier is 28.3 mW. The proposed mixer uses a 65 nm CMOS technology with a chip area of 0.26 mm2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.