Abstract

We report on a light-induced bulk defect activation and subsequent deactivation in boron doped float-zone silicon that can be described by a 3-state model. During treatment at elevated temperature and illumination, a sample first converts from an initial high lifetime state into a degraded low lifetime state and then shows a recovery reaction leading to a third high lifetime state that is then stable under degradation conditions. Furthermore, it is shown that reverse reactions into the initial state appear to be possible both from the degraded as well as the regenerated state. An injection dependent analysis of lifetime data yields a defect capture cross section ratio of ∼20 suggesting a positively charged defect. (© 2016 WILEY-VCH Verlag GmbH &Co. KGaA, Weinheim)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call