Abstract

For describing the state of the wrist, either the force or movement of wrist can be measured as the training target in the simultaneous electromyography control. However, the relationship between the force and movement is so complex that only the force or movement is not precise enough to describe its actual situations. In this paper, we propose a novel platform that can acquire three degrees of freedom (DOF) wrist motion/force synchronously with multi-channel electromyography signals in a hemi-constraint way. The self-made wrist force-movement mapping device establishes a stable relationship between the wrist movement and force. Meanwhile, the elicited wrist movement can be directly fed back to the subjects via laser cursor. The information of the cursor can directly reflect the 3-DOF movement of the wrist without any decoupling algorithms. Through this platform, the support vector regression model learned from the training data can well predict the arbitrary combinations of 3-DOF wrist movements. The cross-validation result indicates that the regression accuracy of free 3-DOF movements can reach a similar performance to that of 2-DOF regular movements (in terms of R2, regular movement vs. free movement, p > 0.1). Graphical abstract The hemi-constrained platform used for detecting 3-DOF wrist movements.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call