Abstract

Nanoparticles (NPs) have been shown to accumulate in organs, cross the blood–brain barrier and placenta, and have the potential to elicit developmental neurotoxicity (DNT). Here, we developed a human embryonic stem cell (hESC)-derived 3-dimensional (3-D) in vitro model that allows for testing of potential developmental neurotoxicants. Early central nervous system PAX6+ precursor cells were generated from hESCs and differentiated further within 3-D structures. The 3-D model was characterized for neural marker expression revealing robust differentiation toward neuronal precursor cells, and gene expression profiling suggested a predominantly forebrain-like development. Altered neural gene expression due to exposure to non-cytotoxic concentrations of the known developmental neurotoxicant, methylmercury, indicated that the 3-D model could detect DNT. To test for specific toxicity of NPs, chemically inert polyethylene NPs (PE-NPs) were chosen. They penetrated deep into the 3-D structures and impacted gene expression at non-cytotoxic concentrations. NOTCH pathway genes such as HES5 and NOTCH1 were reduced in expression, as well as downstream neuronal precursor genes such as NEUROD1 and ASCL1. FOXG1, a patterning marker, was also reduced. As loss of function of these genes results in severe nervous system impairments in mice, our data suggest that the 3-D hESC-derived model could be used to test for Nano-DNT.Electronic supplementary materialThe online version of this article (doi:10.1007/s00204-012-0984-2) contains supplementary material, which is available to authorized users.

Highlights

  • Engineered nanoparticles (NPs) are incorporated into an increasing number of commercial products, ranging from food constituents and cosmetics to electronics, coatings, paints and optics, and are explored for medical applications, and soil and water remediation

  • To model the three-dimensional (3-D) situation of early human central nervous system (CNS) development, we developed a human embryonic stem cell (hESC)-derived culture system in which CNS progenitor cells mature in a 3-D neurosphere system

  • Rosette-like structures became visible within the neurospheres (Fig. 1d, lower panels, arrows), suggesting progressing differentiation

Read more

Summary

Introduction

Engineered nanoparticles (NPs) are incorporated into an increasing number of commercial products, ranging from food constituents and cosmetics to electronics, coatings, paints and optics, and are explored for medical applications, and soil and water remediation. A wealth of data demonstrates that NPs enter the blood circulation and organs, including the brain, and cross the placenta. This points toward potential health risks for humans, including cardiovascular. Mechanisms of toxicity are diverse and include oxidative stress, integration into mitochondria, activation of immune responses, changes in receptor or channel function by incorporated NPs, and interaction with enzymes. Toxicity mechanisms differ between the different NPs and depend on their chemical composition, shape, and surface properties (Buzea et al 2007)

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call