Abstract

This paper presents the design and development of a compact 3-D transmit/receive (T/R) module with a selectively anodized aluminum multilayer package for X-band phased array radar applications. The proposed multilayer package consists of anodized aluminum substrates and vertical interconnects with embedded vias. The proposed package platform is based on thick anodized aluminum oxide layers and active bare chips directly mounted on bulk aluminum substrates for high electrical isolation and an effective heat sink. With its combination of thin-film embedded passive components and multilayer structure, the proposed module features a compact size of 20 mm × 20 mm, with a package height of 3.7 mm. To transfer radio-frequency (RF) signals vertically, we used coaxial hermetic seal vias with characteristic 50 Ω impedances and embedded anodized aluminum vias with a solder ball attachment and flip-chip bonding. The optimized vertical interconnect structure demonstrates RF characteristics with an insertion loss of less than 1.55 dB and a return loss of less than 12.25 dB over a broad bandwidth ranging from 0.1 to 10 GHz. The fabricated X-band 3-D T/R module has a maximum transmit output power of 39.81 dBm (9.5 W), a maximum transmit gain of 41.25 dB, and a receive gain of 19.15 dB over the 9-10 GHz frequency band. The RF-signal phase amplitude control is achieved by means of a 6 bit phase shifter with an rms accuracy of more than 5° and a gain setting range of 24 dB with an rms accuracy of more than 1.5 dB. The proposed multilayer aluminum package has the advantages of reducing the module size, decreasing the cost, and managing the thermal problem for X-band high-power T/R module package applications.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.