Abstract

The degree of stenosis is the most common criterion used to assess the severity of lower limb peripheral arterial disease. Two-dimensional ultrasound (US) imaging is the first-line diagnostic method for investigating lesions, but it cannot render a 3-D map of the entire lower limb vascular tree required for therapy planning. We propose a prototype 3-D US imaging robotic system that can potentially reconstruct arteries from the iliac in the lower abdomen down to the popliteal behind the knee. A realistic multi-modal vascular phantom was first conceptualized to evaluate the system's performance. Geometric accuracies were assessed in surface reconstruction and cross-sectional area in comparison to computed tomography angiography (CTA). A mean surface map error of 0.55 mm was recorded for 3-D US vessel representations, and cross-sectional lumen areas were congruent with CTA geometry. In the phantom study, stenotic lesions were properly localized and severe stenoses up to 98.3% were evaluated with –3.6 to 11.8% errors. The feasibility of the in vivo system in reconstructing the normal femoral artery segment of a volunteer and detecting stenoses on a femoral segment of a patient was also investigated and compared with that of CTA. Together, these results encourage future developments to increase the robot's potential to adequately represent lower limb vessels and clinically evaluate stenotic lesions for therapy planning and recurrent non-invasive and non-ionizing follow-up examinations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call