Abstract

The 2008 Iwate-Miyagi Nairiku earthquake (M 7.2) was a shallow inland earthquake that occurred in the volcanic front of the northeastern Japan arc. To understand why the earthquake occurred beneath an active volcanic area, in which ductile crust generally impedes fault rupture, we conducted magnetotelluric surveys at 14 stations around the epicentral area 2 months after the earthquake. Based on 56 sets of magnetotelluric impedances measured by the present and previous surveys, we estimated the three-dimensional (3-D) electrical resistivity distribution. The inverted 3-D resistivity model showed a shallow conductive zone beneath the Kitakami Lowland and a few conductive patches beneath active volcanic areas. The shallow conductive zone is interpreted as Tertiary sedimentary rocks. The deeper conductive patches probably relate to volcanic activities and possibly indicate high-temperature anomalies. Aftershocks were distributed mainly in the resistive zone, interpreted as a brittle zone, and not in these conductive areas, interpreted as ductile zones. The size of the brittle zone seems large enough for a fault rupture area capable of generating an M 7-class earthquake, despite the areas distributed among the ductile zones. This interpretation implies that 3-D elastic heterogeneity, due to regional geology and volcanic activities, controls the size of the fault rupture zone. Additionally, the elastic heterogeneities could result in local stress concentration around the earthquake area and cause faulting.

Highlights

  • The 2008 Iwate-Miyagi Nairiku earthquake (M 7.2) was a shallow inland earthquake that occurred in the volcanic front of the northeastern Japan arc

  • The 2008 Iwate-Miyagi Nairiku earthquake (M 7.2) was an inland earthquake that occurred in the vicinity of the volcanic front of the northeastern Japan arc on 14 July

  • Full list of author information is available at the end of the article volcanic areas

Read more

Summary

Introduction

The 2008 Iwate-Miyagi Nairiku earthquake (M 7.2) was a shallow inland earthquake that occurred in the volcanic front of the northeastern Japan arc. To understand why the earthquake occurred beneath an active volcanic area, in which ductile crust generally impedes fault rupture, we conducted magnetotelluric surveys at 14 stations around the epicentral area 2 months after the earthquake. Aftershocks were distributed mainly in the resistive zone, interpreted as a brittle zone, and not in these conductive areas, interpreted as ductile zones. The size of the brittle zone seems large enough for a fault rupture area capable of generating an M 7-class earthquake, despite the areas distributed among the ductile zones. This interpretation implies that 3-D elastic heterogeneity, due to regional geology and volcanic activities, controls the size of the fault rupture zone. The elastic heterogeneities could result in local stress concentration around the earthquake area and cause faulting

Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call