Abstract
Boundary value problems for Sturm-Liouville operators with potentials from the class $W_2^{-1}$ on a star-shaped graph are considered. We assume that the potentials are known on all the edges of the graph except two, and show that the potentials on the remaining edges can be constructed by fractional parts of two spectra. A uniqueness theorem is proved, and an algorithm for the constructive solution of the partial inverse problem is provided. The main ingredient of the proofs is the Riesz-basis property of specially constructed systems of functions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.