Abstract

A threshold condition different from the classical one is proposed for MOSFET with quantum effects, and is based on self-consistent numerical solution of the Schrödinger’s and Poisson’s equations. Furthermore, an accurate 1D threshold-voltage model including polysilicon-depletion effects is built by experimental fitting. Simulated results exhibit good agreement with measurement data. Based on this 1D model, a 2D quantum-modified threshold-voltage model for small MOSFET is developed by solving the quasi-2D Poisson’s equation and taking short-channel effects and quantum-mechanical effects into consideration. The model can also be used for deep-submicron MOSFET with high- k gate-dielectric and reasonable design of device parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call