Abstract

We propose a model of equiaxed eutectic solidification that couples macroscopic heat diffusion with a microscopic description of nucleation and growth of the eutectic grains. The heat equation is solved numerically by means of an implicit finite difference method. The evolution of solid fraction is deduced from a stochastic model of nucleation and growth which uses the local temperature (interpolated from the FDM mesh) to determine the local grain density and the local growth rate. The model predicts the evaluations of both temperature and solid fraction at any point of the sample. Moreover, a realistic appearance of the recalescence on the cooling curves, as well as a detailed picture of the microstructure, are predicted. We apply the model to the solidification of grey cast iron.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.