Abstract

The main purpose of this study is to apply a two-fluid mathematical model to numerical simulation of two-phase flow at low-pressure condition. Although models of sub-cooled boiling flow at one-dimension and high-pressure have been studied extensively, there are few equivalent studies for numerical simulation at two-dimension and low-pressure (1–2 bar) conditions. Recent literature studies on sub-cooled boiling flow at low-pressure have shown that empirical models developed for high-pressure situations are not valid at low-pressures. Since the mathematical model used in this study is accomplished at low-pressure, the transport equations for the variables of each phase are substituted in low-pressure. The governing equations of two-phase flow with an allowance to inter-phase transfer of mass, momentum and heat, are solved using a two-fluid; non-equilibrium model. The finite volume discretization scheme is used to create a linearized system of equations that are solved by SIMPLE staggered grid solution technique for a rectangular channel. Improvement of the void fraction prediction of our model for the case of low-pressure sub-cooled flow boiling conditions was achieved. It is found that the heat transfer due to evaporation and surface quenching is higher than that by convection. Good agreement is achieved with the predicted results against the experimental data’s available in the literatures for a number of test cases.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.