Abstract

Ocean basin is modeled as a two-dimensional closed, bounded domain in which the fluid flow is governed by the complex partial differential equations in the flow function. Keeping in view that the ocean currents are non-viscous, no normal flow conditions are used at the basin boundaries. The parameters investigated here are: Coriolis parameter, wind stress coefficient, and latitude. Stochastic differential equations in time scales are solved by deterministic and stochastic methods. Deterministic results concluded that streamlines are symmetric about stagnation point (no flow) for 0<Rp<6.57. Stochastic controls are introduced to account for variability in time scales. Euler-Maruyama (direct) and Fokker-Planck equation schemes (indirect) are proposed. It is concluded that stream functions in both direct and indirect methods are of the same qualitatively and quantitatively when 0<Rp<79.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.